1. (a) (i) $\mathrm{C}_{\mathrm{p}}=2+4=6 \mu \mathrm{~F}$

A1
(ii) $\quad 1 / \mathrm{C}=1 / 2+1 / 4$
$\mathrm{Cs}=4 / 3=1.33 \mu \mathrm{~F}$
C1 A1
(b) (i) 6.0 V A1
(ii) $\mathrm{Q}=\mathrm{C}_{\mathrm{p}} \mathrm{V}$

C1 $=6 \times 6=36 \mu \mathrm{C} \quad \mathrm{A} 1$
(c) $\mathrm{E}=1 / 2 \mathrm{C}_{\mathrm{s}} \mathrm{V}^{2}$ C1
$=24 \times 10^{-6} \quad \mathrm{~A} 1$
(d) (i) The capacitors discharge through the voltmeter.
(ii) $\quad V=V_{0} e^{-t / C R}$
$1 / 4=e^{-t /(6 \times 12)}$
C1
$\ln 4=t / 72 \quad$ C1
$t=72 \ln 4 \approx 100 \mathrm{~s} \quad \mathrm{~A} 1$
2. (a) $\mathrm{Q}_{0}=\mathrm{CV}=1.2 \times 10^{-11} \times 5.0 \times 10^{3} ;=6.0 \times 10^{-8} ; \mathrm{C}(3) 3$
(b) (i) $\mathrm{RC}=1.2 \times 10^{15} \times 1.2 \times 10^{-11}$ or $=1.44 \times 10^{4}(\mathrm{~s})(1) \quad 1$
(ii) $\mathrm{I}=\mathrm{V} / \mathrm{R}=5000 / 1.2 \times 10^{15}$ or $=4.16 \times 10^{-12}(\mathrm{~A})(1) \quad 1$
(iii) $\mathrm{t}=\mathrm{Q}_{0} / \mathrm{I} ;=6 \times 10^{-8} / 4.16 \times 10^{-12}=1.44 \times 10^{4}(\mathrm{~s}) \quad 2$
(iv) $\mathrm{Q}=\mathrm{Q}_{\mathrm{o}} \mathrm{e}^{-1} ; \mathrm{Q}=0.37 \mathrm{Q}_{\mathrm{o}}$ so Q lost $=0.63 \mathrm{Q}_{\mathrm{o}} \quad 2$
(c) (i) capacitors in parallel come to same voltage (1) so Q stored $\alpha \mathrm{C}$ of capacitor (1) capacitors in ratio 10^{3} so only $10^{-3} \mathrm{Q}_{0}$ left on football (1) 3
(ii) $\mathrm{V}=\mathrm{Q} / \mathrm{C}=6.0 \times 10^{-8} / 1.2 \times 10^{-8}$ or $6.0 \times 10^{-11} / 1.2 \times 10^{-11}$ or only 10^{-3} Q left so $10^{-3} \mathrm{~V}$ left; $=5.0(\mathrm{~V})$
3. (a) (i) $\mathrm{Q}=\mathrm{VC} ; \mathrm{W}=1 / 2 \mathrm{VC} \cdot \mathrm{V}\left(=1 / 2 \mathrm{CV}^{2}\right)$
(ii) parabolic shape passing through origin (1)
plotted accurately as $\mathrm{W}=1.1 \mathrm{~V}^{2}$ (1)
(b) (i) $\mathrm{T}=\mathrm{RC}$; $=6.8 \times 10^{3} \times 2.2=1.5 \times 10^{4} \mathrm{~s}=4.16 \mathrm{~h}$
(ii) $\quad \Delta \mathrm{W}=1 / 2 \mathrm{C}\left(\mathrm{V}_{1}{ }^{2}-\mathrm{V}_{2}{ }^{2}\right)=1.1(25-16) ;=9.9(\mathrm{~J})$
(iii) $4=5 \exp \left(-\mathrm{t} / 1.5 \times 10^{4}\right)$; giving $\mathrm{t}=1.5 \times 10^{4} \times \ln 1.25=3.3 \times 10^{3}(\mathrm{~s})$
(iv) $\mathrm{P}=\Delta \mathrm{W} / \Delta \mathrm{t}=9.9 / 3.3 \times 10^{3}=3.0 \mathrm{~mW} \quad$ ecf b(ii) and (iii) 1
allow $\mathrm{P}=\mathrm{V}_{\mathrm{av}}{ }^{2} / \mathrm{R}=4.5^{2} / 6.8 \times 10^{3}=2.98 \mathrm{~mW}$
4. (a) (i)

capacitor	capacitance $/ \mu \mathrm{F}$	charge $/ \mu \mathrm{C}$	p.d. $/ \mathrm{V}$	energy $/ \mu \mathrm{J}$
X	5	30	$=Q / C$ $=6(\mathrm{~V})(1)$	$=1 / 2 C V^{2}(1)$ $=1 / 2 \times 5 \times 6^{2}$ $=90(1)$
Y	25	$=C V$ $=25 \times 6$ $=150(\mu \mathrm{C})(1)$	$=6(\mathrm{~V})(1)$	$=450(1)$
Z	10	$30+150=$ $180(\mu \mathrm{C})(1)$	$=Q / C$ $=180 / 10$ $=18(\mathrm{~V})(1)$	$=1620(1)$

Each box correctly calculated scores (1) + (1) for $1 / 2 C V^{2}$
9
(ii) $118 \mathrm{~V}+6 \mathrm{~V}=24(\mathrm{~V})$
$2180(\mu \mathrm{C})(1)$
3 180/24 = 7.5 (1)
$490+450+1620=2160(\mu \mathrm{~J})(1)$
(b) (i) Kirchhoff's second law OR conservation of energy (1) 1
(ii) Kirchhoff's first law OR conservation of charge (1) 1
(c) (i) time constant $=C R$ (1)

$$
=7.5 \times 10^{-6} \times 200000=1.5(\mathrm{~s})
$$

(ii) $\quad Q=Q_{0} e^{-\frac{4 C R}{C R}}$

$$
Q / Q_{\mathrm{o}}=\mathrm{e}^{-4}=0.0183
$$

5. (i) $\mathrm{C}_{\mathrm{p}}=\mathrm{C}+\mathrm{C}=6 \mu \mathrm{~F} ; 1 / \mathrm{C}_{\mathrm{s}}=1 / 2 \mathrm{C}+1 / \mathrm{C} ;=3 / 2 \mathrm{C}$ giving $\mathrm{Cs}=2 \mathrm{C} / 3=(2 \mu \mathrm{~F}) \quad 3$
(ii) 2 sets of (3 in series) in parallel/ 3 sets of (2 in parallel) in series 2
